Code No: F-15005

FACULTY OF SCIENCE

B.A./B.Sc. (CBCS) I-Semester Examination, December 2023/January 2024

Subject: Mathematics

Paper - I: Differential and Integral Calculus

Max. Marks: 80

Time: 3 Hours

PART - A

(8x4= 32 Marks)

Note: Answer any eight questions.

1. Evaluate $\lim_{\substack{x \to \infty \\ y \to 2}} \frac{xy}{x^2 + 2y^2}$

2. If $u = e^{x^y}$ then find $\frac{\partial^2 u}{\partial y \partial x}$

3. If $u = e^{ax} sinby$ then find $\frac{\partial^2 u}{\partial x \partial y}$ and $\frac{\partial^2 u}{\partial y \partial x}$

4. If $z = e^{xy}$ where $x = t \cos t$, $y = t \sin t$ then find $\frac{dz}{dt}$ at $t = \frac{\pi}{2}$

5. Find $\frac{dy}{dx}$ if $(x)^y = (y)^x$

6. Find the stationary points of the function $f(x,y) = x^3 + y^3 - 63(x+y) + 12xy$

7. Find the radius of curvature at each point $P(\varphi, s)$ of the curve $s = c \log(sec\varphi)$

8. Find the radius of curvature at the origin for the curve

 $x^3 + 3x^2y - 4y^3 + y^2 - 6x = 0$

9. Find the envelope of the families of the curve $\frac{x\cos\alpha}{a} + \frac{y\sin\alpha}{b} = 1$; where α is a parameter.

10. Find the length of arc of the catenary $y = c \cosh\left(\frac{x}{c}\right)$ measured from the vertex to the point P(x, y).

11. Find the volume of the solid obtained by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the x – axis.

12. Find the surface area of the sphere of radius a

PART - B

Note: Answer all questions.

 $(4 \times 12 = 48 \text{ Marks})$

13. (a)(i) If $u = x^y$ then show that $\frac{\partial^3 u}{\partial x^2 \partial y} = \frac{\partial^3 u}{\partial x \partial y \partial x}$

(ii) If $z = \tan(y + ax) + (y - ax)^{3/2}$ then find the value of $\frac{\partial^2 z}{\partial x^2} - a^2 \frac{\partial^2 z}{\partial y^2}$

(b)(i) If $u = \log(tanx + tany + tanz)$ then find the value of $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z}$

(ii) Verify Euler's theorem for $z = sin^{-1}\left(\frac{z}{v}\right) + tan^{-1}\left(\frac{y}{v}\right)$

- 14. (a)(i) If z = f(x, y); $x = e^{u} + e^{-v}$ and $y = e^{-u} e^{v}$ then show that $\frac{\partial z}{\partial u} \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} y \frac{\partial z}{\partial y}$
 - (ii) If $u = x^2 + y^2 + z^2$, where $x = e^t$, $y = e^t sint$ and $z = e^t cost$ then find $\frac{du}{dt}$
 - (b) (i) Discuss the maxima or minima of the function $f(x,y) = 3x^2 y^2 + x^2$
 - (ii) Expand the function $f(x, y) = e^x \log(1 + y)$ in Taylor's expansion about (0,0) up to second degree term.
- 15. (a) (i) For the curve $y = \frac{ax}{a+x}$, if ρ' is the radius of curvature of at any point P(x,y) then show that $\left(\frac{2\rho}{a}\right)^{2/3} = \left(\frac{y}{x}\right)^2 + \left(\frac{x}{y}\right)^2$
 - (ii) Show that there is no envelope for the family of circles with centres $(\alpha, 0)$ and radii α^2 where α is a parameter.

(OR)

- (b) (i) Find the circle of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at $\left(\frac{a}{4}, \frac{a}{4}\right)$
 - (ii) Find the envelope of the family of straight lines $\frac{x}{a} + \frac{y}{b} = 1$ where a and b are parameters connected by a + b = c
- 16. (a) (i) Find the length of the complete arch of the cycloid $x = a(\theta \sin\theta), y = a(1 \cos\theta)$.
 - (ii) Find the area of the surface of revolution generated by revolving about the y axis the arc of $x = y^3$ from y = 0 to y = 2

(OR)

- (b) (i) Find the perimeter of the cardioid $r = a(1 + \cos\theta)$.
 - (ii) Find the volume of a spherical cap of height h cut-off from a sphere of radius 'a'

26/06/23 A/M

Code No: E-10005/BI

FACULTY OF SCIENCE

B.A. / B.Sc. (CBCS) | Semester (Backlog) Examination, June / July 2023

Subject: Mathematics

Paper - I: Differential and Integral Calculus

Time: 3 Hours

Max. Marks: 80

PART - A

Note: Answer any eight questions.

 $(8 \times 4 = 32 \text{ Marks})$

1. If $u = \sin^{-1}\frac{x}{y} + \tan^{-1}\frac{y}{x}$ show that $x\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$.

2. If $u = \log(x^3 + y^3 + z^3 - 3xyz)$ show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$

3. Verify that if z = xy f(y/x) then $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2z$.

4. Find $\frac{dz}{dt}$ when $z = xy^2 + x^2y$, $x = at^2$, y = 2at.

5. If F(x, y, z) = 0 find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$

6. State Taylor's theorem for function of two variables.

7. Define radius of curvature.

8. Find the envelope of the straight lines $x \cos \alpha + y \sin \alpha = l \sin \alpha \cos \alpha$, α is parameter.

9. Find $\frac{ds}{dt}$ for the curve x = a(t - sint), y = a(1 - cost).

10. Find the perimeter of the circle $x^2 + y^2 = a^2$.

11. Find the length of the arc of the curve y = logsec x from x = 0 to $x = \pi/4$.

12. Find the volume of the hemisphere.

PART - B

Note: Answer all the questions.

 $(4 \times 12 = 48 \text{ Marks})$

13. a) State and prove Euler's theorem on homogeneous functions.

(OR

b) If
$$u = \tan^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
 show that $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \frac{1}{4}\sin 2u$.

14, a) Expand $\sin xy$ in powers of (x-1) and $\left(y-\frac{\pi}{2}\right)$ upto second degree terms.

(OR

b) Prove that $f_{xy}(0,0) \neq f_{yx}(0,0)$ for the function f given by

$$f(x,y) = \frac{xy(x^2-y^2)}{x^2+y^2}; (xy) \neq (0,0), \ f(0,0) = 0.$$

15. a) Show that the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $(ax)^{2/3} + (by)^{2/3} = (a^2 - b^2)^{2/3}$. (OR)

b) Find the envelope of the straight line $\frac{x}{a} + \frac{y}{b} = 1$ when $ab = c^2$, c is constant.

16. a) Find the volume of the right circular cone of height h and base of radius a.

(OR)

b) Find the length of the curve $y = \log \frac{e^{1}-1}{e^{x}+1}$ from x = 1 to x = 2.

Code No: E-10005

FACULTY OF SCIENCE

B.A. / B.Sc. (CBCS) I - Semester Examination, February / March 2023

Subject: Mathematics

Paper - I: Differential & Integral calculus

Time: 3 Hours

Max. Marks: 80

PART - A

Note: Answer any eight questions.

 $(8 \times 4 = 32 \text{ Marks})$

Note: Answer any eight questions.

1. If
$$u = x^2 \tan^{-1} \frac{y}{x} - y^2 \tan^{-1} \frac{x}{y}$$
; $xy \neq 0$ prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{x^2 - y^2}{x^2 + y^2}$.

2. If
$$u = 3(lx + my + nz)^2 - (x^2 + y^2 + z^2)$$
 and $l^2 + m^2 + n^2 = 1$, show that
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.$$

3. If
$$Z = f(x + ay) + Q(x - ay)$$
 Prove that $\frac{\partial^2 z}{\partial y^2} = a^2 \frac{\partial^2 z}{\partial x^2}$.

4. If Z is a function of x and y and if
$$x = e^{u} + e^{-v}$$
, $y = e^{-u} - e^{v}$ Prove that
$$\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}.$$

5. Verify Euler's theorem for
$$z = ax^2 + 2hxy + by^2$$
.

5. Verify Euler's theorem for
$$z = ux + 2ixy$$
6. If $x = u + e^{-v} \sin u$, $y = v + e^{-v} \cos u$ Prove that $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$.

7. Find
$$\frac{ds}{dx}$$
 for the curve $y = \cosh\left(\frac{x}{c}\right)$.

8. Define radius of curvature.

9. Obtain the envelope of the family of straight lines. $y = mx + \frac{a}{m}$.

10. Find the length of the circumference of the circle $x^2 + y^2 = {16 \over 16}$.

11. Find the whole length of the curve $x^{2/3} + y^{2/3} = a^{2/3}$.

12. Find the volume of the sphere of radius a.

PART - B

Note: Answer all the questions.

 $(4 \times 12 = 48 \text{ Marks})$

13. (a) If
$$H = f(y - z, z - x, x - y)$$
, Prove that $\frac{\partial H}{\partial x} + \frac{\partial H}{\partial y} + \frac{\partial H}{\partial z} = 0$.

(b) If
$$u = \cot^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
 show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{1}{4}\sin 2u = 0$.

14. (a) Determine maximum or minimum values of u if $u = x^3 + y^3 - 3axy$.

(OR)

- (b) Expand $f(x, y) = x^2 + xy y^2$ by Taylor's theorem in powers of (x y) and (y + 2).
- 15. (a) Obtain the evolute of the parabola $y^2 = 4ax$.

(OR)

- (b) Find the envelope of the lines $\frac{x}{a} + \frac{y}{b} = 1$, when the parameters a and b are connected by the relation a + b = c.
- 16. (a) Find the length of the arc of the parabola $y^2 = 4ax$ cut off by the line y = 3x.
 - (b) Find the volume of the right circular cone of height h and base of radius a.

FACULTY OF SCIENCE B.Sc. / BA (CBCS) I – Semester Examination, March 2022

Subject: Mathematics
Paper-I: Differential & Integral Calculus

Time: 3 Hours

PART - A

Max. Marks: 80

Note: Answer any eight questions.

(8 x 4 = 32 Marks)

1. Show that $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$ does not exist.

2. If
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

then show that f is discontinuous at O(0,0)

3. If
$$f(x,y) = (x^2 + y^2)e^{x-y}$$
 then evaluate $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y \partial x}$.

4. If
$$f(x,y) = \cos^{-1}\left(\frac{y}{x}\right)$$
 then find the total differential of f .

5. If
$$z = z(x, y)$$
 and $x = e^{2u} + e^{-2v}$, $y = e^{2u} - e^{-2v}$, then evaluate $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v}$.

6. If
$$x^y = y^x$$
 then find $\frac{dy}{dx}$.

7. Find the radius of curvature of the curve
$$y = x^4 - 4x^3 - 18x^2$$
 at $O(0,0)$.

8. Find the radius of curvature of the curve
$$x = y^2 + 4y + 3$$
 at $P(8,1)$.

8. Find the radius of curvature of the curve
$$y = mx + 2m^3$$
 where m is the parameter.
9. Find the envelope of the curve $y = mx + 2m^3$ where m is the parameter.

10. Find the length of the curve whose parametric equation is
$$x = e^{-t} \cos t$$
, $y = e^{-t} \sin t$, $0 \le t \le \frac{\pi}{4}$.

11. Find the length of the arc of the curve
$$y = \log \tanh\left(\frac{x}{2}\right)$$
 from $x = 1$ to $x = 2$.

12. Find the volume of the paraboloid generated by the revolution of the parabola
$$y^2 = 12x$$
 about the $x - axis$ from $x = 0$ to $x = 5$.

PART - B

Note: Answer any four questions.

 $(4 \times 12 = 48 \text{ Marks})$

13. (i) If
$$u(x, y, z) = \log(\tan x + \tan y + \tan z)$$
 then evaluate

$$(\sin 2x)\frac{\partial u}{\partial x} + (\sin 2y)\frac{\partial u}{\partial y} + (\sin 2z)\frac{\partial u}{\partial z}$$

(ii) If
$$z(x,y) = (x+3y)^{\frac{3}{2}} + (x-4y)^{\frac{7}{2}}$$
 then evaluate $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} - 12 \frac{\partial^2 z}{\partial y^2}$.

14.(i) If
$$z(x,y) = \operatorname{Sec}^{-1}\left(\frac{x^3+y^3}{x+y}\right)$$
 then show that $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 2 \cot z$.

(ii) If
$$u(x,y) = Tan^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
 then evaluate $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$.

15. If
$$f(x,y) = \begin{cases} \frac{xy(15x^2 - 7y^2)}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 then show that $f_{xy}(0,0) \neq f_{xy}(0,0)$.

- 16. Find the extreme value of f(x, y, z) = xyz when x + y + z = 12.
- 17. Find the circle of curvature of the curve $y^2 = 4ax$ at $P(am^2, 2am)$.
- 18. Find the evolute of the curve $x^2 = 4ay$.

Mathy

- 19. Find the length of the loop of the curve $9y^2 = (x-2)(x-5)^2$.
- 20. Find the area of the surface of the solid generated by the revolution of an arc of curve $y = c \cosh\left(\frac{x}{c}\right)$ about x axis.

FACULTY OF SCIENCE

B.Sc. / B.A. I Semester (CBCS) Examination, August 2021 Subject: Mathematics - I Paper – Differential and Integral Calculus

Time: 2 Hours

Max. Marks: 80

PART - A

Note: Answer any five questions.

 $(5 \times 4 = 20 \text{ Marks})$

- 1 Evaluate $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$.
- 2 If $w = \log_{e}(x^{2} + y^{2})$ find $\frac{\partial w}{\partial x}, \frac{\partial x}{\partial y}$.
- 3 State Euler' theorem and verify it for $(ax + by)^{\frac{3}{2}}$.
- 4 Find $\frac{du}{dt}$ when $u = \sin\left(\frac{x}{y}\right)$, $x = e^t$ and $y = t^2$.
- 5 Find the derivative of $f(x, y) = x^3 + y^3 3ax^2 = 0$.
- 6 Expand $f(x,y) = x^2 + xy + y^2$ in powers of (x-1) and (y-2) using Taylor's theorem.
- Find the radius of curvature for the equation $x^3 + xy^2 6y^2 = 0$ at (3,3).
- 8 Find the centre of curvature for the equation xy(x + y) = 2 at (1,1).
- 9 Find the envelope of the family of curves $y = mx + \frac{a}{m}$ with m as parameter.
- 10•Find the length of the curve $y = \log_e(e^x + 1) \log_e(e^x 1)$ from x = 1 to x = 2.
- 11 Find the volume of the solid of revolution generated by revolving the plane area bounded by the curve $y = x^2$, x = 3 and X-axis.
- 12, Find the surface area of a sphere of radius 'r'.

PART - B

Note: Answer any three questions.

 $(3 \times 20 = 60 \text{ Marks})$

13 Discuss the continuity of the function $f(x,y) = \begin{cases} \frac{x^2}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0) \\ 3 & \text{if } (x,y) = (0,0) \end{cases}$ at

origin.

14 If
$$u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
, $x^2 + y^2 + z^2 \neq 0$ then show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$.

33

15 If
$$V = r^m$$
 where $r^2 = x^2 + y^2 + z^2$ then show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = m(m+1)r^{m-2}$.

..2.

- 16 Find the minimum value of $x^2 + y^2 + z^2$ given that ax + by + cz = p.
- 17 Find the evolute of the curve $x = a \left(\cos t + \log \tan \frac{t}{2} \right)$, $y = a \sin t$.
- 18 Find the envelope of the family of straight lines $\frac{x}{a} + \frac{y}{b} = 1$ where a and b are connected by the relation $ab = c^2$, c being a constant.
- 19 Find the length of the Astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ where a is a constant.
- 20 Find the volume of the solid generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about major axis.

FACULTY OF SCIENCE

B.A. / B.Sc. I Semester (CBCS) Examination, November/December 2021

Subject: Mathematics Paper – I: Differential and Integral Calculus

Time: 2 Hours Max. Marks: 80

PART - A

Note: Answer any five questions. (5 x 4 = 20 Marks)

T Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$.

2. If
$$w = Tan^{-1}\left(\frac{y}{x}\right)$$
 find $\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}$.

- 3 Define homogeneous function and give two examples.
- 4 Find the total derivative of $u(x, y, z) = e^{x/z}$.
- 5. Find the derivative of $f(x, y) = (\cos x)^y (\sin y)^x = 0$
- Expand $f(x,y) = e^y \log_e (1+x)$ in powers of x and y at (0,0) using Taylor's series.
 - 7 Find the radius of curvature for the equation $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at $\left(\frac{a}{4}, \frac{a}{4}\right)$.
 - 8 Find the centre of curvature for the equation $x^3 + y^3 = 2$ at (1,1).
 - 9 Find the envelope of the family of curves $y = mx + \sqrt{1 + m^2}$ with m as parameter.
 - 10 Find the length of the curve $y = x\sqrt{x}$ from x = 0 to $x = \frac{4}{3}$.
 - 11 Find the volume of the solid of revolution generated by revolving the plane area bounded by the curve $y=x^3$, y=0, x=2 about x-axis.
 - 12 Find the surface area of a sphere of radius 'a'.

PART - B

Note: Answer any three questions.

 $(3 \times 20 = 60 \text{ Marks})$

13 Show that $f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & \text{when } (x,y) \neq (0,0) \\ 0 & \text{when } (x,y) = (0,0) \end{cases}$ is continuous at origin.

If
$$u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$$
 then show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = Tan^3 u$.

If
$$x = u + v$$
, $y = uv$ and $z = f(x, y)$ then prove that $u \frac{\partial z}{\partial u} + v \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} + 2y \frac{\partial z}{\partial y}$.

16 Find the maximum value of $x^2 + y^2 + z^2$ given that $xyz = a^2$.